Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Int ; 171: 107701, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36542998

RESUMEN

BACKGROUND: Bottled water (BW) consumption in the United States and globally has increased amidst heightened concern about environmental contaminant exposures and health risks in drinking water supplies, despite a paucity of directly comparable, environmentally-relevant contaminant exposure data for BW. This study provides insight into exposures and cumulative risks to human health from inorganic/organic/microbial contaminants in BW. METHODS: BW from 30 total domestic US (23) and imported (7) sources, including purified tapwater (7) and spring water (23), were analyzed for 3 field parameters, 53 inorganics, 465 organics, 14 microbial metrics, and in vitro estrogen receptor (ER) bioactivity. Health-benchmark-weighted cumulative hazard indices and ratios of organic-contaminant in vitro exposure-activity cutoffs were assessed for detected regulated and unregulated inorganic and organic contaminants. RESULTS: 48 inorganics and 45 organics were detected in sampled BW. No enforceable chemical quality standards were exceeded, but several inorganic and organic contaminants with maximum contaminant level goal(s) (MCLG) of zero (no known safe level of exposure to vulnerable sub-populations) were detected. Among these, arsenic, lead, and uranium were detected in 67 %, 17 %, and 57 % of BW, respectively, almost exclusively in spring-sourced samples not treated by advanced filtration. Organic MCLG exceedances included frequent detections of disinfection byproducts (DBP) in tapwater-sourced BW and sporadic detections of DBP and volatile organic chemicals in BW sourced from tapwater and springs. Precautionary health-based screening levels were exceeded frequently and attributed primarily to DBP in tapwater-sourced BW and co-occurring inorganic and organic contaminants in spring-sourced BW. CONCLUSION: The results indicate that simultaneous exposures to multiple drinking-water contaminants of potential human-health concern are common in BW. Improved understandings of human exposures based on more environmentally realistic and directly comparable point-of-use exposure characterizations, like this BW study, are essential to public health because drinking water is a biological necessity and, consequently, a high-vulnerability vector for human contaminant exposures.


Asunto(s)
Agua Potable , Compuestos Orgánicos Volátiles , Contaminantes Químicos del Agua , Humanos , Estados Unidos , Abastecimiento de Agua , Exposición a Riesgos Ambientales/efectos adversos , Contaminantes Químicos del Agua/análisis
2.
Environ Toxicol Chem ; 42(2): 367-384, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36562491

RESUMEN

Watersheds of the Great Lakes Basin (USA/Canada) are highly modified and impacted by human activities including pesticide use. Despite labeling restrictions intended to minimize risks to nontarget organisms, concerns remain that environmental exposures to pesticides may be occurring at levels negatively impacting nontarget organisms. We used a combination of organismal-level toxicity estimates (in vivo aquatic life benchmarks) and data from high-throughput screening (HTS) assays (in vitro benchmarks) to prioritize pesticides and sites of concern in streams at 16 tributaries to the Great Lakes Basin. In vivo or in vitro benchmark values were exceeded at 15 sites, 10 of which had exceedances throughout the year. Pesticides had the greatest potential biological impact at the site with the greatest proportion of agricultural land use in its basin (the Maumee River, Toledo, OH, USA), with 72 parent compounds or transformation products being detected, 47 of which exceeded at least one benchmark value. Our risk-based screening approach identified multiple pesticide parent compounds of concern in tributaries of the Great Lakes; these compounds included: eight herbicides (metolachlor, acetochlor, 2,4-dichlorophenoxyacetic acid, diuron, atrazine, alachlor, triclopyr, and simazine), three fungicides (chlorothalonil, propiconazole, and carbendazim), and four insecticides (diazinon, fipronil, imidacloprid, and clothianidin). We present methods for reducing the volume and complexity of potential biological effects data that result from combining contaminant surveillance with HTS (in vitro) and traditional (in vivo) toxicity estimates. Environ Toxicol Chem 2023;42:367-384. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Asunto(s)
Herbicidas , Insecticidas , Plaguicidas , Contaminantes Químicos del Agua , Humanos , Plaguicidas/toxicidad , Plaguicidas/análisis , Lagos/química , Monitoreo del Ambiente , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Ríos/química
3.
Ecol Indic ; 140: 1-14, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36425672

RESUMEN

Previous studies indicate that cyanobacterial harmful algal bloom (cyanoHAB) frequency, extent, and magnitude have increased globally over the past few decades. However, little quantitative capability is available to assess these metrics of cyanoHABs across broad geographic scales and at regular intervals. Here, the spatial extent was quantified from a cyanobacteria algorithm applied to two European Space Agency satellite platforms-the MEdium Resolution Imaging Spectrometer (MERIS) onboard Envisat and the Ocean and Land Colour Instrument (OLCI) onboard Sentinel-3. CyanoHAB spatial extent was defined for each geographic area as the percentage of valid satellite pixels that exhibited cyanobacteria above the detection limit of the satellite sensor. This study quantified cyanoHAB spatial extent for over 2,000 large lakes and reservoirs across the contiguous United States (CONUS) during two time periods: 2008-2011 via MERIS and 2017-2020 via OLCI when cloud-, ice-, and snow-free imagery was available. Approximately 56% of resolvable lakes were glaciated, 13% were headwater, isolated, or terminal lakes, and the rest were primarily drainage lakes. Results were summarized at national-, regional-, state-, and lake-scales, where regions were defined as nine climate regions which represent climatically consistent states. As measured by satellite, changes in national cyanoHAB extent did have a strong increase of 6.9% from 2017 to 2020 (|Kendall's tau (τ)| = 0.56; gamma (γ) = 2.87 years), but had negligible change (|τ| = 0.03) from 2008 to 2011. Two of the nine regions had moderate (0.3 ≤ |τ| < 0.5) increases in spatial extent from 2017 to 2020, and eight of nine regions had negligible (|τ| < 0.2) change from 2008 to 2011. Twelve states had a strong or moderate increase from 2017 to 2020 (|τ| ≥ 0.3), while only one state had a moderate increase and two states had a moderate decrease from 2008 to 2011. A decrease, or no change, in cyanoHAB spatial extent did not indicate a lack of issues related to cyanoHABs. Sensitivity results of randomly omitted daily CONUS scenes confirm that even with reduced data availability during a short four-year temporal assessment, the direction and strength of the changes in spatial extent remained consistent. We present the first set of national maps of lake cyanoHAB spatial extent across CONUS and demonstrate an approach for quantifying past and future changes at multiple spatial scales. Results presented here provide water quality managers information regarding current cyanoHAB spatial extent and quantify rates of change.

4.
ACS ES T Water ; 2(10): 1772-1788, 2022 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-36277121

RESUMEN

In the United States (US), private-supply tapwater (TW) is rarely monitored. This data gap undermines individual/community risk-management decision-making, leading to an increased probability of unrecognized contaminant exposures in rural and remote locations that rely on private wells. We assessed point-of-use (POU) TW in three northern plains Tribal Nations, where ongoing TW arsenic (As) interventions include expansion of small community water systems and POU adsorptive-media treatment for Strong Heart Water Study participants. Samples from 34 private-well and 22 public-supply sites were analyzed for 476 organics, 34 inorganics, and 3 in vitro bioactivities. 63 organics and 30 inorganics were detected. Arsenic, uranium (U), and lead (Pb) were detected in 54%, 43%, and 20% of samples, respectively. Concentrations equivalent to public-supply maximum contaminant level(s) (MCL) were exceeded only in untreated private-well samples (As 47%, U 3%). Precautionary health-based screening levels were exceeded frequently, due to inorganics in private supplies and chlorine-based disinfection byproducts in public supplies. The results indicate that simultaneous exposures to co-occurring TW contaminants are common, warranting consideration of expanded source, point-of-entry, or POU treatment(s). This study illustrates the importance of increased monitoring of private-well TW, employing a broad, environmentally informative analytical scope, to reduce the risks of unrecognized contaminant exposures.

5.
Environ Toxicol Chem ; 41(3): 781-791, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35040181

RESUMEN

Emerging infectious disease outbreaks are one of multiple stressors responsible for amphibian declines globally. In the northeastern United States, ranaviral diseases are prevalent in amphibians and other ectothermic species, but there is still uncertainty as to whether their presence is leading to population-level effects. Further, there is also uncertainty surrounding the potential interactions among disease infection prevalence in free-ranging animals and habitat degradation (co-occurrence of chemical stressors). The present study was designed to provide field-based estimates of the relationship between amphibian disease and chemical stressors. We visited 40 wetlands across three protected areas, estimated the prevalence of ranavirus among populations of larval wood frogs and spotted salamanders, and assessed chemical and biological stressors in wetland habitats and larval amphibians using a suite of selected bioassays, screening tools, and chemical analyses. Ranavirus was detected on larval amphibians from each protected area with an estimated occupancy ranging from 0.27 to 0.55. Considerable variation in ranavirus occupancy was also observed within and among each protected area. Of the stressors evaluated, ranavirus prevalence was strongly and positively related to concentrations of metalloestrogens (metals with the potential to bind to estrogen receptors) and total metals in wetland sediments and weakly and negatively related to total pesticide concentrations in larval amphibians. These results can be used by land managers to refine habitat assessments to include such environmental factors with the potential to influence disease susceptibility. Environ Toxicol Chem 2022;41:781-791. © 2022 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Asunto(s)
Enfermedades Transmisibles Emergentes , Ranavirus , Anfibios , Animales , Larva , Prevalencia , Ranidae , Humedales
6.
Water Res ; 201: 117377, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34218089

RESUMEN

This study presents the first large-scale assessment of cyanobacterial frequency and abundance of surface water near drinking water intakes across the United States. Public water systems serve drinking water to nearly 90% of the United States population. Cyanobacteria and their toxins may degrade the quality of finished drinking water and can lead to negative health consequences. Satellite imagery can serve as a cost-effective and consistent monitoring technique for surface cyanobacterial blooms in source waters and can provide drinking water treatment operators information for managing their systems. This study uses satellite imagery from the European Space Agency's Ocean and Land Colour Instrument (OLCI) spanning June 2016 through April 2020. At 300-m spatial resolution, OLCI imagery can be used to monitor cyanobacteria in 685 drinking water sources across 285 lakes in 44 states, referred to here as resolvable drinking water sources. First, a subset of satellite data was compared to a subset of responses (n = 84) submitted as part of the U.S. Environmental Protection Agency's fourth Unregulated Contaminant Monitoring Rule (UCMR 4). These UCMR 4 qualitative responses included visual observations of algal bloom presence and absence near drinking water intakes from March 2018 through November 2019. Overall agreement between satellite imagery and UCMR 4 qualitative responses was 94% with a Kappa coefficient of 0.70. Next, temporal frequency of cyanobacterial blooms at all resolvable drinking water sources was assessed. In 2019, bloom frequency averaged 2% and peaked at 100%, where 100% indicated a bloom was always present at the source waters when satellite imagery was available. Monthly cyanobacterial abundances were used to assess short-term trends across all resolvable drinking water sources and effect size was computed to provide insight on the number of years of data that must be obtained to increase confidence in an observed change. Generally, 2016 through 2020 was an insufficient time period for confidently observing changes at these source waters; on average, a decade of satellite imagery would be required for observed environmental trends to outweigh variability in the data. However, five source waters did demonstrate a sustained short-term trend, with one increasing in cyanobacterial abundance from June 2016 to April 2020 and four decreasing.


Asunto(s)
Cianobacterias , Agua Potable , Monitoreo del Ambiente , Eutrofización , Lagos , Estados Unidos
7.
Sci Total Environ ; 788: 147721, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34134358

RESUMEN

A pilot-scale expanded target assessment of mixtures of inorganic and organic contaminants in point-of-consumption drinking water (tapwater, TW) was conducted in Puerto Rico (PR) to continue to inform TW exposures and corresponding estimations of cumulative human-health risks across the US. In August 2018, a spatial synoptic pilot assessment of than 524 organic and 37 inorganic chemicals was conducted in 14 locations (7 home; 7 commercial) across PR. A follow-up 3-day temporal assessment of TW variability was conducted in December 2018 at two of the synoptic locations (1 home, 1 commercial) and included daily pre- and post-flush samples. Concentrations of regulated and unregulated TW contaminants were used to calculate cumulative in vitro bioactivity ratios and Hazard Indices (HI) based on existing human-health benchmarks. Synoptic results confirmed that human exposures to inorganic and organic contaminant mixtures, which are rarely monitored together in drinking water at the point of consumption, occurred across PR and consisted of elevated concentrations of inorganic contaminants (e.g., lead, copper), disinfection byproducts (DBP), and to a lesser extent per/polyfluoroalkyl substances (PFAS) and phthalates. Exceedances of human-health benchmarks in every synoptic TW sample support further investigation of the potential cumulative risk to vulnerable populations in PR and emphasize the importance of continued broad characterization of drinking-water exposures at the tap with analytical capabilities that better represent the complexity of both inorganic and organic contaminant mixtures known to occur in ambient source waters. Such health-based monitoring data are essential to support public engagement in source water sustainability and treatment and to inform consumer point-of-use treatment decision making in PR and throughout the US.


Asunto(s)
Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Agua Potable/análisis , Monitoreo del Ambiente , Humanos , Puerto Rico , Agua , Contaminantes Químicos del Agua/análisis
8.
Harmful Algae ; 103: 102003, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33980443

RESUMEN

The contamination of coastal ecosystems from a variety of toxins of marine algal origin is a common and well-documented situation along the coasts of the United States and globally. The occurrence of toxins originating from cyanobacteria along marine coastlines is much less studied, and little information exists on whether toxins from marine and freshwater sources co-occur regularly. The current study focused on the discharge of cyanotoxins from a coastal lagoon (Santa Clara River Estuary) as a consequence of an extreme tide event (King Tides; December 3-5, 2017) resulting in a breach of the berm separating the lagoon from the ocean. Monthly monitoring in the lagoon throughout 2017 documented more than a dozen co-occurring cyanobacterial genera, as well as multiple algal and cyanobacterial toxins. Biotoxin monitoring before and following the King Tide event using Solid Phase Adsorption Toxin Tracking (SPATT) in the lagoon and along the coast revealed the co-occurrence of microcystins, anatoxin, domoic acid, and other toxins on multiple dates and locations. Domoic acid was ubiquitously present in SPATT deployed in the lagoon and along the coast. Microcystins were also commonly detected in both locations, although the beach berm retained the lagoonal water for much of the year. Mussels collected along the coast contained microcystins in approximately half the samples, particularly following the King Tide event. Anatoxin was observed in SPATT only in late December, following the breach of the berm. Our findings indicate both episodic and persistent occurrence of both cyanotoxins and marine toxins may commonly contaminate coastlines in proximity to cyanobacteria-laden creeks and lagoons.


Asunto(s)
Cianobacterias , Ecosistema , California , Monitoreo del Ambiente , Ríos
9.
Environ Int ; 152: 106487, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33752165

RESUMEN

BACKGROUND: Humans are primary drivers of environmental contamination worldwide, including in drinking-water resources. In the United States (US), federal and state agencies regulate and monitor public-supply drinking water while private-supply monitoring is rare; the current lack of directly comparable information on contaminant-mixture exposures and risks between private- and public-supplies undermines tapwater (TW) consumer decision-making. METHODS: We compared private- and public-supply residential point-of-use TW at Cape Cod, Massachusetts, where both supplies share the same groundwater source. TW from 10 private- and 10 public-supply homes was analyzed for 487 organic, 38 inorganic, 8 microbial indicators, and 3 in vitro bioactivities. Concentrations were compared to existing protective health-based benchmarks, and aggregated Hazard Indices (HI) of regulated and unregulated TW contaminants were calculated along with ratios of in vitro exposure-activity cutoffs. RESULTS: Seventy organic and 28 inorganic constituents were detected in TW. Median detections were comparable, but median cumulative concentrations were substantially higher in public supply due to 6 chlorine-disinfected samples characterized by disinfection byproducts and corresponding lower heterotrophic plate counts. Public-supply applicable maximum contaminant (nitrate) and treatment action (lead and copper) levels were exceeded in private-supply TW samples only. Exceedances of health-based HI screening levels of concern were common to both TW supplies. DISCUSSION: These Cape Cod results indicate comparable cumulative human-health concerns from contaminant exposures in private- and public-supply TW in a shared source-water setting. Importantly, although this study's analytical coverage exceeds that currently feasible for water purveyors or homeowners, it nevertheless is a substantial underestimation of the full breadth of contaminant mixtures documented in the environment and potentially present in drinking water. CONCLUSION: Regardless of the supply, increased public engagement in source-water protection and drinking-water treatment, including consumer point-of-use treatment, is warranted to reduce risks associated with long-term TW contaminant exposures, especially in vulnerable populations.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Purificación del Agua , Monitoreo del Ambiente , Humanos , Massachusetts , Estados Unidos , Agua , Contaminantes Químicos del Agua/análisis , Abastecimiento de Agua
10.
Sci Total Environ ; 774: 145462, 2021 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-33609824

RESUMEN

Widespread occurrence of cyanobacterial harmful algal blooms (CyanoHABs) and the associated health effects from potential cyanotoxin exposure has led to a need for systematic and frequent screening and monitoring of lakes that are used as recreational and drinking water sources. Remote sensing-based methods are often used for synoptic and frequent monitoring of CyanoHABs. In this study, one such algorithm - a sub-component of the Cyanobacteria Index called the CIcyano, was validated for effectiveness in identifying lakes with toxin-producing blooms in 11 states across the contiguous United States over 11 bloom seasons (2005-2011, 2016-2019). A matchup data set was created using satellite data from MEdium Resolution Imaging Spectrometer (MERIS) and Ocean Land Colour Imager (OLCI), and nearshore, field-measured Microcystins (MCs) data as a proxy of CyanoHAB presence. While the satellite sensors cannot detect toxins, MCs are used as the indicator of health risk, and as a confirmation of cyanoHAB presence. MCs are also the most common laboratory measurement made by managers during CyanoHABs. Algorithm performance was evaluated by its ability to detect CyanoHAB 'Presence' or 'Absence', where the bloom is confirmed by the presence of the MCs. With same-day matchups, the overall accuracy of CyanoHAB detection was found to be 84% with precision and recall of 87 and 90% for bloom detection. Overall accuracy was expected to be between 77% and 87% (95% confidence) based on a bootstrapping simulation. These findings demonstrate that CIcyano has utility for synoptic and routine monitoring of potentially toxic cyanoHABs in lakes across the United States.


Asunto(s)
Cianobacterias , Microcistinas , Algoritmos , Floraciones de Algas Nocivas , Lagos
11.
Chemosphere ; 274: 129623, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33515847

RESUMEN

Various stressors including temperature, environmental chemicals, and toxins can have profound impacts on immunity to pathogens. Increased eutrophication near rivers and lakes coupled with climate change are predicted to lead to increased algal blooms. Currently, the effects of cyanobacterial toxins on disease resistance in mammals is a largely unexplored area of research. Recent studies have suggested that freshwater cyanotoxins can elicit immunomodulation through interaction with specific components of innate immunity, thus potentially altering disease susceptibility parameters for fish, wildlife, and human health owing to the conserved nature of the vertebrate immune system. In this study, we investigated the effects of three microcystin congeners (LR, LA, and RR), nodularin-R, and cylindrospermopsin for their ability to directly interact with nine different human Toll-like receptors (TLRs)-key pathogen recognition receptors for innate immunity. Toxin concentrations were verified by LC/MS/MS prior to use. Using an established HEK293-hTLR NF-κB reporter assay, we concluded that none of the tested toxins (29-90 nM final concentration) directly interacted with human TLRs in either an agonistic or antagonistic manner. These results suggest that earlier reports of cyanotoxin-induced NF-κB responses likely occur through different surface receptors to mediate inflammation.


Asunto(s)
Microcistinas , Espectrometría de Masas en Tándem , Alcaloides , Animales , Toxinas de Cianobacterias , Células HEK293 , Humanos , Microcistinas/toxicidad , Péptidos Cíclicos , Receptores Toll-Like/genética
12.
Ecol Indic ; 128: 1-107822, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35558093

RESUMEN

Cyanobacterial blooms can have negative effects on human health and local ecosystems. Field monitoring of cyanobacterial blooms can be costly, but satellite remote sensing has shown utility for more efficient spatial and temporal monitoring across the United States. Here, satellite imagery was used to assess the annual frequency of surface cyanobacterial blooms, defined for each satellite pixel as the percentage of images for that pixel throughout the year exhibiting detectable cyanobacteria. Cyanobacterial frequency was assessed across 2,196 large lakes in 46 states across the continental United States (CONUS) using imagery from the European Space Agency's Ocean and Land Colour Instrument for the years 2017 through 2019. In 2019, across all satellite pixels considered, annual bloom frequency had a median value of 4% and a maximum value of 100%, the latter indicating that for those satellite pixels, a cyanobacterial bloom was detected by the satellite sensor for every satellite image considered. In addition to annual pixel-scale cyanobacterial frequency, results were summarized at the lake- and state-scales by averaging annual pixel-scale results across each lake and state. For 2019, average annual lake-scale frequencies also had a maximum value of 100%, and Oregon and Ohio had the highest average annual state-scale frequencies at 65% and 52%. Pixel-scale frequency results can assist in identifying portions of a lake that are more prone to cyanobacterial blooms, while lake- and state-scale frequency results can assist in the prioritization of sampling resources and mitigation efforts. Satellite imagery is limited by the presence of snow and ice, as imagery collected in these conditions are quality flagged and discarded. Thus, annual bloom frequencies within nine climate regions were investigated to determine whether missing data biased results in climate regions more prone to snow and ice, given that their annual summaries would be weighted toward the summer months when cyanobacterial blooms tend to occur. Results were unbiased by the time period selected in most climate regions, but a large bias was observed for the Northwest Rockies and Plains climate region. Moderate biases were observed for the Ohio Valley and the Southeast climate regions. Finally, a clustering analysis was used to identify areas of high and low cyanobacterial frequency across CONUS based on average annual lake-scale cyanobacterial frequencies for 2019. Several clusters were identified that transcended state, watershed, and eco-regional boundaries. Combined with additional data, results from the clustering analysis may offer insight regarding large-scale drivers of cyanobacterial blooms.

13.
Remote Sens Environ ; 266: 1-14, 2021 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36424983

RESUMEN

Lakes and other surface fresh waterbodies provide drinking water, recreational and economic opportunities, food, and other critical support for humans, aquatic life, and ecosystem health. Lakes are also productive ecosystems that provide habitats and influence global cycles. Chlorophyll concentration provides a common metric of water quality, and is frequently used as a proxy for lake trophic state. Here, we document the generation and distribution of the complete MEdium Resolution Imaging Spectrometer (MERIS; Appendix A provides a complete list of abbreviations) radiometric time series for over 2300 satellite resolvable inland bodies of water across the contiguous United States (CONUS) and more than 5,000 in Alaska. This contribution greatly increases the ease of use of satellite remote sensing data for inland water quality monitoring, as well as highlights new horizons in inland water remote sensing algorithm development. We evaluate the performance of satellite remote sensing Cyanobacteria Index (CI)-based chlorophyll algorithms, the retrievals for which provide surrogate estimates of phytoplankton concentrations in cyanobacteria dominated lakes. Our analysis quantifies the algorithms' abilities to assess lake trophic state across the CONUS. As a case study, we apply a bootstrapping approach to derive a new CI-to-chlorophyll relationship, ChlBS, which performs relatively well with a multiplicative bias of 1.11 (11%) and mean absolute error of 1.60 (60%). While the primary contribution of this work is the distribution of the MERIS radiometric timeseries, we provide this case study as a roadmap for future stakeholders' algorithm development activities, as well as a tool to assess the strengths and weaknesses of applying a single algorithm across CONUS.

14.
Sci Total Environ ; 719: 137236, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32126404

RESUMEN

Safe drinking water at the point of use (tapwater, TW) is a public-health priority. TW exposures and potential human-health concerns of 540 organics and 35 inorganics were assessed in 45 Chicago-area United States (US) homes in 2017. No US Environmental Protection Agency (EPA) enforceable Maximum Contaminant Level(s) (MCL) were exceeded in any residential or water treatment plant (WTP) pre-distribution TW sample. Ninety percent (90%) of organic analytes were not detected in treated TW, emphasizing the high quality of the Lake Michigan drinking-water source and the efficacy of the drinking-water treatment and monitoring. Sixteen (16) organics were detected in >25% of TW samples, with about 50 detected at least once. Low-level TW exposures to unregulated disinfection byproducts (DBP) of emerging concern, per/polyfluoroalkyl substances (PFAS), and three pesticides were ubiquitous. Common exceedances of non-enforceable EPA MCL Goal(s) (MCLG) of zero for arsenic [As], lead [Pb], uranium [U], bromodichloromethane, and tribromomethane suggest potential human-health concerns and emphasize the continuing need for improved understanding of cumulative effects of low-concentration mixtures on vulnerable sub-populations. Because DBP dominated TW organics, residential-TW concentrations are potentially predictable with expanded pre-distribution DBP monitoring. However, several TW chemicals, notably Pb and several infrequently detected organic compounds, were not readily explained by pre-distribution samples, illustrating the need for continued broad inorganic/organic TW characterization to support consumer assessment of acceptable risk and point-of-use treatment options.


Asunto(s)
Purificación del Agua , Chicago , Agua Potable , Michigan , Plaguicidas , Estados Unidos , Contaminantes Químicos del Agua
15.
Sci Rep ; 9(1): 18310, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31797884

RESUMEN

Cyanobacterial harmful algal blooms (cyanoHABs) are a serious environmental, water quality and public health issue worldwide because of their ability to form dense biomass and produce toxins. Models and algorithms have been developed to detect and quantify cyanoHABs biomass using remotely sensed data but not for quantifying bloom magnitude, information that would guide water quality management decisions. We propose a method to quantify seasonal and annual cyanoHAB magnitude in lakes and reservoirs. The magnitude is the spatiotemporal mean of weekly or biweekly maximum cyanobacteria biomass for the season or year. CyanoHAB biomass is quantified using a standard reflectance spectral shape-based algorithm that uses data from Medium Resolution Imaging Spectrometer (MERIS). We demonstrate the method to quantify annual and seasonal cyanoHAB magnitude in Florida and Ohio (USA) respectively during 2003-2011 and rank the lakes based on median magnitude over the study period. The new method can be applied to Sentinel-3 Ocean Land Color Imager (OLCI) data for assessment of cyanoHABs and the change over time, even with issues such as variable data acquisition frequency or sensor calibration uncertainties between satellites. CyanoHAB magnitude can support monitoring and management decision-making for recreational and drinking water sources.


Asunto(s)
Cianobacterias/crecimiento & desarrollo , Monitoreo del Ambiente , Floraciones de Algas Nocivas , Lagos/microbiología , Tecnología de Sensores Remotos , Calidad del Agua , Florida , Ohio
16.
Opt Express ; 26(6): 7404-7422, 2018 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-29609296

RESUMEN

Performance assessment of ocean color satellite data has generally relied on statistical metrics chosen for their common usage and the rationale for selecting certain metrics is infrequently explained. Commonly reported statistics based on mean squared errors, such as the coefficient of determination (r2), root mean square error, and regression slopes, are most appropriate for Gaussian distributions without outliers and, therefore, are often not ideal for ocean color algorithm performance assessment, which is often limited by sample availability. In contrast, metrics based on simple deviations, such as bias and mean absolute error, as well as pair-wise comparisons, often provide more robust and straightforward quantities for evaluating ocean color algorithms with non-Gaussian distributions and outliers. This study uses a SeaWiFS chlorophyll-a validation data set to demonstrate a framework for satellite data product assessment and recommends a multi-metric and user-dependent approach that can be applied within science, modeling, and resource management communities.

17.
Harmful Algae ; 67: 144-152, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28755717

RESUMEN

Cyanobacterial harmful algal blooms (CyanoHAB) are thought to be increasing globally over the past few decades, but relatively little quantitative information is available about the spatial extent of blooms. Satellite remote sensing provides a potential technology for identifying cyanoHABs in multiple water bodies and across geo-political boundaries. An assessment method was developed using MEdium Resolution Imaging Spectrometer (MERIS) imagery to quantify cyanoHAB surface area extent, transferable to different spatial areas, in Florida, Ohio, and California for the test period of 2008 to 2012. Temporal assessment was used to evaluate changes in satellite resolvable inland waterbodies for each state of interest. To further assess cyanoHAB risk within the states, the World Health Organization's (WHO) recreational guidance level thresholds were used to categorize surface area of cyanoHABs into three risk categories: low, moderate, and high-risk bloom area. Results showed that in Florida, the area of cyanoHABs increased largely due to observed increases in high-risk bloom area. California exhibited a slight decrease in cyanoHAB extent, primarily attributed to decreases in Northern California. In Ohio (excluding Lake Erie), little change in cyanoHAB surface area was observed. This study uses satellite remote sensing to quantify changes in inland cyanoHAB surface area across numerous water bodies within an entire state. The temporal assessment method developed here will be relevant into the future as it is transferable to the Ocean Land Colour Instrument (OLCI) on Sentinel-3A/3B missions.


Asunto(s)
Cianobacterias/fisiología , Floraciones de Algas Nocivas , Tecnología de Sensores Remotos/métodos , California , Florida , Geografía , Factores de Tiempo
18.
Environ Sci Technol ; 51(9): 4792-4802, 2017 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-28401767

RESUMEN

Surface water from 38 streams nationwide was assessed using 14 target-organic methods (719 compounds). Designed-bioactive anthropogenic contaminants (biocides, pharmaceuticals) comprised 57% of 406 organics detected at least once. The 10 most-frequently detected anthropogenic-organics included eight pesticides (desulfinylfipronil, AMPA, chlorpyrifos, dieldrin, metolachlor, atrazine, CIAT, glyphosate) and two pharmaceuticals (caffeine, metformin) with detection frequencies ranging 66-84% of all sites. Detected contaminant concentrations varied from less than 1 ng L-1 to greater than 10 µg L-1, with 77 and 278 having median detected concentrations greater than 100 ng L-1 and 10 ng L-1, respectively. Cumulative detections and concentrations ranged 4-161 compounds (median 70) and 8.5-102 847 ng L-1, respectively, and correlated significantly with wastewater discharge, watershed development, and toxic release inventory metrics. Log10 concentrations of widely monitored HHCB, triclosan, and carbamazepine explained 71-82% of the variability in the total number of compounds detected (linear regression; p-values: < 0.001-0.012), providing a statistical inference tool for unmonitored contaminants. Due to multiple modes of action, high bioactivity, biorecalcitrance, and direct environment application (pesticides), designed-bioactive organics (median 41 per site at µg L-1 cumulative concentrations) in developed watersheds present aquatic health concerns, given their acknowledged potential for sublethal effects to sensitive species and lifecycle stages at low ng L-1.


Asunto(s)
Ríos/química , Contaminantes Químicos del Agua , Cloropirifos/toxicidad , Monitoreo del Ambiente , Plaguicidas , Aguas Residuales/química
19.
Ecol Indic ; 80: 84-95, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30245589

RESUMEN

Cyanobacterial harmful algal blooms (cyanoHAB) cause extensive problems in lakes worldwide, including human and ecological health risks, anoxia and fish kills, and taste and odor problems. CyanoHABs are a particular concern in both recreational waters and drinking source waters because of their dense biomass and the risk of exposure to toxins. Successful cyanoHAB assessment using satellites may provide an indicator for human and ecological health protection, In this study, methods were developed to assess the utility of satellite technology for detecting cyanoHAB frequency of occurrence at locations of potential management interest. The European Space Agency's MEdium Resolution Imaging Spectrometer (MERIS) was evaluated to prepare for the equivalent series of Sentine1-3 Ocean and Land Colour Imagers (OLCI) launched in 2016 as part of the Copernicus program. Based on the 2012 National Lakes Assessment site evaluation guidelines and National Hydrography Dataset, the continental United States contains 275,897 lakes and reservoirs >1 hectare in area. Results from this study show that 5.6 % of waterbodies were resolvable by satellites with 300 m single-pixel resolution and 0.7 % of waterbodies were resolvable when a three by three pixel (3×3-pixel) array was applied based on minimum Euclidian distance from shore. Satellite data were spatially joined to U.S. public water surface intake (PWSI) locations, where single-pixel resolution resolved 57% of the PWSI locations and a 3×3-pixel array resolved 33% of the PWSI locations. Recreational and drinking water sources in Florida and Ohio were ranked from 2008 through 2011 by cyanoHAB frequency above the World Health Organization's (WHO) high threshold for risk of 100,000 cells mL-1. The ranking identified waterbodies with values above the WHO high threshold, where Lake Apopka, FL (99.1 %) and Grand Lake St. Marys, OH (83 %) had the highest observed bloom frequencies per region. The method presented here may indicate locations with high exposure to cyanoHABs and therefore can be used to assist in prioritizing management resources and actions for recreational and drinking water sources.

20.
Sci Total Environ ; 579: 149-158, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27863869

RESUMEN

Glyphosate and atrazine are the most intensively used herbicides in the United States. Although there is abundant spatial and temporal information on atrazine occurrence at regional scales, there are far fewer data for glyphosate, and studies that compare the two herbicides are rare. We investigated temporal patterns in glyphosate and atrazine concentrations measured weekly during the 2013 growing season in 100 small streams in the Midwestern United States. Glyphosate was detected in 44% of samples (method reporting level 0.2µg/L); atrazine was detected above a threshold of 0.2µg/L in 54% of samples. Glyphosate was detected more frequently in 12 urban streams than in 88 agricultural streams, and at concentrations similar to those in streams with high agricultural land use (>40% row crop) in the watershed. In contrast, atrazine was detected more frequently and at higher concentrations in agricultural streams than in urban streams. The maximum concentration of glyphosate measured at most urban sites exceeded the maximum atrazine concentration, whereas at agricultural sites the reverse was true. Measurement at a 2-day interval at 8 sites in northern Missouri revealed that transport of both herbicide compounds appeared to be controlled by spring flush, that peak concentration duration was brief, but that peaks in atrazine concentrations were of longer duration than those of glyphosate. The 2-day sampling also indicated that weekly sampling is unlikely to capture peak concentrations of glyphosate and atrazine.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...